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We calculate the fundamental field and integral  charac te r i s t i c s  (velocity profiles,  tangential 
s t r e s ses ,  outflow rate, p r e s s u r e  loss, boundaries of the quasirigid core) for a nonlinear 
viscoplast ic  Cesson medium in s ta t ionary stabilized flow in a coaxially cyl indrical  channel. 

In many technological p r o c e s s e s  we encounter problems involving the motion of viscoplast ic  media in 
annular channels.  As examples we cite " tube-in-tube" type heat exchangers,  extrusion and screw- type  
apparatuses ,  and, finally, dril l ing assembl ies  in which special clay and cement  solutions are  pumped 
through the annular gap between the well and tower tubes. Without these solutions efficient passage of oil, 
gas,  or  water  through aper tures  would not be possible.  

Until recently,  the mechanical  behavior of the overwhelming major i ty  of viscoplast ic  fluid d i sper -  
sions was descr ibed by the l inear rheologieal Schwedoff-]3ingham equation 

= t o + ~ .  (1) 

Here ~- is the uniaxial shear  s t r e s s ;  7 0 is the flow limit; "~ = du /dn  is the rate of shear ;  pp is the plastic 
viscosity. 

Thanks to progress in rheometry a limited applicability of Eq. (I) has been established. In actuality, 
the flow curves of viseoplastie compositions, to one degree or another, are nonlinear in regions of small 
and moderate values of ~,. 

Based on the treatment of a large amount of experimental data, obtained by various authors, a gen- 
eralized rheologieal equation for a nonlinear viscoplastie medium was formulated in [I, 2]: 

1 l 1 

T ~ = T0 ~ -~ (b%7) "~ (2) 

Here m and n are  nonlinearity pa r ame te r s  of the flow curve (m > 0; n > 0), not necessa r i ly  integers .  
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Fig. 1. Flow diagram.  

The f o u r - p a r a m e t e r  model (2) unifies in a nonlinear man-  
ner  the viseoplast ie  and anomaloviseous proper t ies  of a medium. 
It genera l izes  the known rheologieal  equations of state: New- 
tonian (m = n, T O = 0), Ostwald de Villat (~-0 = 0), Schwedoff 
- B i n g h a m  (m = n = 1), B u l k l e y - H e r s c h e l  (n =1), Cesson (m = n 
= 2), and Ruffers  (m = n). 

The problem of the flow of a viscoplast ic  medium in an 
annular channel, even in the case of a l inear Schwedoff-Bingham 
medium, has not been solved analytically to date. The widely 
used equation due to F red r i c son  and Bird [3] appears  in the form 
of a set of tables and graphs with the aid of which the neces sa ry  
cha rac te r i s t i c s  (pressure ,  outflow rate,  velocity profile, and 
rheodynamic losses) can be rapidly calculated.  
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We give below a solut ion of the s a m e  p r o b l e m  for  a non l inea r  v i s cop l a s t i c  liquid, 
(Cesson  medium) 

where  m = n = 2 

(3) 

We cons ide r  a flow in the d i r ec t ion  of the pos i t ive  z axis  through an infinite annu la r  channel  f o r m e d  by 
two coaxia l  cy l i nde r s  of radi i  R 1 and R2, under  the ac t ion of a cons tan t  p r e s s u r e  g rad ien t  A = Idp/dz[ .  In 
t e r m s  of s t r e s s e s  the equat ion of mot ion  then has  the f o r m  

1 d 
- -  - -  ( z r )  = ~ A (4) 
r dr 

or,  a f t e r  a s ingle  in tegra t ion ,  

A c 
�9 = - - - -  r + - -  (5) 

2 r 
(c is a cons tant  of in tegra t ion) .  

Thus  the tangent ia l  s t r e s s  p rof i le  (5) a c r o s s  the annular  gap is c o n s e r v e d  with r e s p e c t  to the r h e o -  
logica l  p r o p e r t i e s  of the med ium.  

If the channel  boundar i e s  a r e  fixed, then the re  ex i s t s  in the i n t e r io r  of the channel  a cy l i nd r i ca l  s u r -  
face  r = XR 2 (X > 0), whe re  the s h e a r  s t r e s s  is equal to ze ro .  Then  

= A, _ r]" (6) 
2 [ r 

The magni tude  of the cons tan t  ~ r e m a i n s  to be de t e rmined .  The  ex is tence  of a m i n i m u m  on the prof i le  
"r(r) n e c e s s a r i l y  impl ies  the ex i s tence  in the annular  r eg ion  of two cy l ind r i ca l  s u r f a c e s  r = r 1 and r = r2, 
on which the shea r  s t r e s s  a s s u m e s  the va lues  +T O a n d - T o ,  r e s p e c t i v e l y  (Fig.  1). In this region,  r 1 < r < r2, 
the tangent ia l  s t r e s s e s  a r e  l e s s  than the flow l imit  and the m e d i u m  moves  in the z d i r ec t ion  as a quas i r ig id  
rod .  On both s ides  of this r eg ion  the ve loc i ty  g rad ien t s  4 / a r e  of opposi te  s igns :  pos i t ive  in the tube i n t e r i o r  
(zone I) and negat ive  at the e x t e r i o r  pa r t  of the tube (zone II). 

Upon subst i tu t ing "~ f r o m  Eq. (3) into Eq. (6), taking account  of the sign, t r a n s f o r m i n g  to d imens ion -  
l e s s  va r i ab l e s ,  and p e r f o r m i n g  a s ingle in tegra t ion  with the "no slip" boundary  condi t ions  at both walls  
taken into account ,  we obtain the ve loc i ty  field 

• 2 ( ~ 2  _ _  • --2[ 5~- lie1 (~) --[1 ('~)] (7a) 

(• "< ~ --< ~0, 

, l ! 
W2(~) = [3(1 --~) -1- ~,' In ~ T -~- (1 _~2) _1_ 2~V[f. (~) _ f~ (1)] (7b) 

H e r e  

(~ ~ ~ ~ 1), 

Wo = w~ (~x) = w~ (~) (h  < ~ < ~). 

2T 0 RI 

AR2 AR~. R~. 

?'2 . 

We have the following condi t ions  for  de t e rmin ing  the unknown quant i t ies :  

a) the equat ion for  the ve loc i t i e s  at both boundar ie s  of the quas i r ig id  c o r e :  

(7c) 

(8) 

(9) 

wl (h)  = w~ (~2) 
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Using Eqs .  (Ta) and (7b), we obtain the a lgeb ra i c  equat ion 

I 

b) the equilibrium balance of forces acting on a cylindrical element of the core of length L; herein 

we denote the pressures on the end surfaces of the element by p~ and P2 (P2 > P~) 

or,  a f t e r  obvious s impl i f i ca t ions ,  

~ - -  ~ = ]~. ( 1 1 )  

core; 
Thus  the p las t i c i ty  p a r a m e t e r  m a y  be i n t e r p r e t e d  as  the d i m e n s i o n l e s s  width of the quas i r ig id  flow 

c) the flow condi t ions  at the boundar i e s  of the quas i r ig id  co re ,  namely ,  

T (~1) = ~0 andT (~2) : - -  TO. 

Using Eq. (6) we find 

Equat ions  (10)-(12) f o r m  a compat ib le  s y s t e m  of equat ions  for  de t e rmin ing  the unknown p a r a m e t e r s  
X, r ~.  

As a r e su l t  we a r r i v e  at a compl i ca t ed  t r anscenden ta l  equat ion for  ~2 or  ~l, which is not so lvable  ill 
ana ly t ic  f o r m .  Approx i m a t e  me thods  w e r e  p r e s e n t e d  in [4] fo r  finding the boundar i e s  of the quas i r ig id  
c o r e  in the c a s e  of c o m p a r a t i v e l y  sma l l  va lues  of 13, i .e. ,  when ~ and ~2 a re  c lose  to ~0, the r e l a t ive  rad ia l  
coo rd ina t e  of the m a x i m u m  on the ve loc i ty  p rof i l e  of a Newtonian liquid in the annular  channel .  

We cons ide r  ano ther  method of ca lcu la t ing  the fundamenta l  c h a r a c t e r i s t i c s  of the motion,  a method 
s i m i l a r  in concep t  to that  used  by L a i r d  [5]. F r o m  the condi t ion  (10) f o r  the equat ion of ve loc i t i e s  at both 
bounda r i e s  of the quas i r ig id  co re ,  and a l so  f r o m  the r e l a t ion  (12), we a r r i v e  at the equat ion 

i 

We r e w r i t e  Eq. (10a) in the f o r m  

~. ~. ~. ~. ~. ~. ~- ~- 

" - .  " " ~ q 3  

" "  ~ ~ "  . .NO,2  

0 qZ a,~ 0,6 qa 
Fig.  2. Boundar i e s  of quas i r ig id  
flow core ,  ~l and ~ 2, v e r s u s  the 
p l a s t i c i ty  p a r a m e t e r  ft. 

--2t3Y[F~(~; I ) - -F~(•  ~1)] In x~2 = 0. (13) 

We solved Eq. (13) a c c u r a t e l y  by a n u m e r i c a l  method  with the 
aid of the Minsk-22  e l ec t ron i c  digi ta l  c o m p u t e r .  In addit ion,  fo r  
each  fixed value  of ~ and fl, a sequence  of a r b i t r a r i l y  s e l ec t ed  
va lues  of oz = }1/}2 was  given.  F r o m  the condi t ion % s }1 -< }2 -< 1, 
it is  obvious that ~t _< c~ _< 1. In Eq. (13) the subs t i tu t ion  of c~2 fo r  
~1 t r a n s f o r m s  Eq.  (13) to an a lgebra ic  equat ion in the one unknown 
~2- The o r d e r  of i ts  solut ion is the fol lowing.  

Since ~2 -< 1, then of all  the r o o t s  of the equat ion @(c~; ~2) = 0 
only the pos i t ive  r ea l  roo t  loca ted  in the in t e rva l  (• 1) is of i n t e r e s t  
to us .  We divide this in t e rva l  into s equal p a r t s  and f o r m  the 
p r o d u c t s  

q)(XIr w h e r e  k : 0;  l ,  2 . . . . .  s .  (14) 

We may  d e t e r m i n e  the in te rva l  Ax k = Xk-X k_~, where  the roo t  
is located  f r o m  the s ign of this p roduc t .  We then divide Ax k into 
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m equal par t s  and pe r fo rm the calculations, comparing the values obtained with a prese lec ted  value 5, which 
defines the accuracy  of the calculat ions.  The p rocess  is repeated until the required precis ion is attained. 
In this way, for each value of ce the dependence of ~2 and ~t on the plastic pa ramete r /3  and the relat ive chan- 
nel aper ture  n may be determined.  The integrals  appearing in Eq. (13) were obtained numerical ly  in the 
p roce s s  of finding the roots .  

For  the values obtained for ~2 and ~l the p r e s s u r e  loss Ap = AL was calculated f rom the condition (11) 
and the dimensionless  outflow rate f rom the mater ia l  balance 

~t l 
~' 1 2 2  ;(~)~d~ (15) q. = Wl(~) ~d~ + ~-  (~2--~i)~o + ~2 

after  per forming the integration we obtained 

q ~ -6  (~ _ ~? _ ~ + ~)  _ ~ -  (~ + ~ I _  ~ ~2) 

Here 

1 
1 ( 1 + ~ - - ~ 4 - - •  2 +~- _ ~ ~r2 ( 1 ) - - ! I / 2 ( ~ ) ~ f ~ ( ~ ) - -  ~fi (~)]. (16) (1) 2 % G . ) - - 2 q ~ ( ~ 0 § 2 1 5  2~ ~ • 

q ~AR~; q~l(~)= fl(~)~d~; ~2(~)= L ( ~ ) ~  (17) 

The computer  resu l t s  are  presented graphical ly in Figs.  2-4, giving the dependences of q, q//3, ~l, 
~2 and w 0 on ~ and/3. In Figs.  2-4 the corresponding curves  for a l inear viscoplast ic  Schwedoff -Bingham 
body (m = n = 1) are  shown by the dashed lines. 

The dependence of the dimensionless  coordinates  of the quasirigid core on the viscoplast ic i ty  p a r a m -  
eter/3 is shown in Fig. 2; this dependence was found to be a universal  one for all n = m by vir tue of the con- 
servat ive  proper ty  of the basic relat ions (11) and (12). 

For  the various ~ values the curves  ~2 exhibit r e v e r s e  convexity in their ascending branches,  their 
ends being bounded by the line ~2 = 1. The curves  ~1 (their descending portions) undergo a change in con- 
vexity downwards, i.e., towards the/3 axis. The geometr ic  locus of the ends of these curves,  their  lower 
boundaries,  is the straight  line ~1 = 1-~4. For  an a rb i t r a ry  fixed value of ~ the difference of the ordinates 
of both branches  is the value/3. As the graph shows, with an increase  in fi the quasirigid flow region be- 
comes  wider. This graph makes it ve ry  simple to determine the res i s tance  (pressure  loss) in the channel 
for known values of ~, ~2, Pp and ~'0" 

Of considerable in teres t  is the graph showing the dependence of the longitudinal speed w 0 of the quasi- 
rigid core  on the p a r a m e t e r s  [3 and ~ (Fig~ 3a). With an increase  in/3 (we have in mind an increase  in ~'0 
for A = const, i.e., with an invariable moving p r e s s u r e  drop) the quantity w 0 dec reases  p rogress ive ly  to a 
value close to zero;  the higher the value of ~ the sooner this occurs .  For  compar ison we have shown on 
the graph the corresponding curves  for the l inear Schwedoff-Bingham model. We note that for identical 
values of ~ and for fixed/3 the speed w 0 is somewhat higher for the Schwedoff-Bingham medium. The 
other c i rcumstance  of importance consis ts  in the fact that for small  and moderate  values of/3 the depen- 
dence w0(/3 ) is close to l inear,  whereas  for the Cesson medium the graphs are  noticeably nonlinear over 
the whole range of possible/3 values.  In addition, the quantity w0, Ces may be of an order  less than the co r -  
responding value for the Schwedoff -Bingham medium. Thus the nonlinearity of the theological  curve, 
although not ve ry  informative about the geometry  of the flow (i.e., the values of ~1, ~2, k), indicates the ex- 
ceptionally strong influence on the kinematics and dynamics of the flow, and, in par t icular ,  on the speed 
of the quasirigid core .  

The manner  in which the outflow ra te  q or q//3 through the annular gap depends on the plast ici ty p a r a m -  
eter/3 (Fig. 3b, c) is of a s imi lar  nature.  The influence of the theological  nonlinearity on q manifests  it-  
self  here  even more  strongly than in the case of w 0. Thus, for example, for  ~ = 0.1 and/3 = 0.6, we have 

qsB 
- -  .~. 12. 
qces 

As ~4 increases  this difference becomes less pronounced. For  fixed/3 the charmel geomet ry  also effects the 
outflow rate unequally (Fig. 4). For  a l inear viscoplast ie  medium the values of q significantly exceed the 
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Fig. 3. a) Velocity w 0 of the quasirigid core as a function of 
the relative clogging of the channel ~4 and the plastieityparam- 
eter fl; b) outflow rate q as a function of the parameters ~4 and 
f; c) plasticity parameter/7 as a function of the factor q/ft. 
(Curves 1 and 2 correspond, respectively, to calculations using 
the C esson and the Schwedoff-Bingham models.) 

Di c 

u,s ~:4 / q~6 
76~ 

0'2 0'o o: o,8 <o <2 r 

Fig. 4. Outflow rate  q as a 
function of the channel geo- 
me t ry  and the plast ici ty pa r am-  
eter  ft. (Curves 1 and 2 co r -  
respond, respectively,  to ca l -  
culations using the Cesson and 
the Schwedoff-  Bingham models.) 

corresponding values for its nonlinear analogue (Cesson model). The peculiar i t ies  inherent in the depen- 
dence q(:<) distinguish it f rom the dependence q(fl). As ~4 increases  (a narrowing of the relat ive aperture),  
the outflow rate  q naturally falls toward zero at ~ = 1. However in regions of smal l  and moderate  ~ values 
(up to 0.15-0.20), the curves behave almost  l inearly for both the Schwedoff-Bingham and the Cessonmedia .  

Finally, the rat io q s b / q c e s  shows a weaker dependence on % than on ft. 

Thus the calculations (see Table 1) exhibit the strong influence of the nonlinearity of the viscoplast ic  
flow curve on the nature of the motion of the medium through 'the annular channel and on the integral  char -  
ac te r i s t i cs  of the flow (outflow rate,  p ressure ) .  
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