CALCULATION OF A LAMINAR AXIAL FLOW OF
A NONLINEAR VISCOPLASTIC MEDIUM IN AN
ANNULAR CHANNEL

Z. P. Shul'man UDC 532,517.2:532,135

We calculate the fundamental field and integral characteristics (velocity profiles, tangential
stresses, outflow rate, pressure loss, boundaries of the quasirigid core) for a nonlinear
viscoplastic Cesson medium in stationary stabilized flow in a coaxially cylindrical channel,

In many technological processes we encounter problems involving the motion of viscoplastic media in
annular channels, As examples we cite "tube-in-tube" type heat exchangers, extrusion and screw-type
apparatuses, and, finally, drilling assemblies in which special clay and cement solutions are pumped
through the annular gap between the well and tower tubes, Without these solutions efficient passage of oil,
gas, or water through apertures would not be possible,

Until recently, the mechanical behavior of the overwhelming majority of viscoplastic fluid disper-
sions was described by the linear rheological Schwedoff - Bingham equation

T =T, —,Lupi;. (1)

Here 7 is the uniaxial shear stress; 7, is the flow limit; Vv = du/dn is the rate of shear; p is the plastic
viscosity.

Thanks to progress in rheometry a limited applicability of Eq. (1) has been established. In actuality,
the flow curves of viscoplastic compositions, to one degree or another, are nonlinear in regions of small
and moderate values of ¥,

Based on the treatment of a large amount of experimental data, obtained by various authors, a gen-
eralized rheological equation for a nonlinear viscoplastic medium was formulated in [1, 2]:

1 1 1

=1 4 ()" (2)
Here m and n are nonlinearity parameters of the flow curve (m > 0; n > 0), not necessarily integers.

The four-parameter model (2) unifies in a nonlinear man-
ner the viscoplastic and anomaloviscous properties of a medium,
T, 1, It generalizes the known rheological equations of state: New-
7 1T tonian (m =n, 7, = 0), Ostwald de Villat (7, = 0), Schwedoff
—Bingham (m =n =1), Bulkley—Herschel (n =1), Cesson (m =n

T T‘Z%LT(‘“‘_ = 2), and Ruffers (m = n).

The problem of the flow of a viscoplastic medium in an

PN annular channel, even in the case of a linear Schwedoff— Bingham

_______ medium, has not been solved analytically to date. The widely
é’EL - used equation due to Fredricson and Bird [3] appears in the form

] T T T T T T T T of a set of tables and graphs with the aid of which the necessary

characteristics (pressure, outflow rate, velocity profile, and

Fig. 1. Flow diagram. rheodynamic losses) can be rapidly calculated.
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We give below a solution of the same problem for a nonlinear viscoplastic liquid, where m =n = 2
(Cesson medium)

Vo=V 1+ iy - (3
We consider a flow in the direction of the positive z axis through an infinite annular channel formed by

two coaxial cylinders of radii R; and R,, under the action of a constant pressure gradient A = |dp/dz|. In
terms of stresses the equation of motion then has the form

1 d
— (1) =—A
s (w) ; 4)
or, after a single integration,
2 r

(c is a constant of integration).

Thus the tangential stress profile (5) across the annular gap is conserved with respect to the rheo-
logical properties of the medium.

If the channel boundaries are fixed, then there exists in the interior of the channel a cylindrical sur-
face r = AR, (A > 0), where the shear stress is equal to zero. Then

_ AJURY
= [ . r]. (6)

The magnitude of the constant A remains to be determined. The existence of a minimum on the profile
T(r) necessarily implies the existence in the annular region of two cylindrical surfaces r =r; and r = r,,
on which the shear stress assumes the values +7, and — 7|, respectively (Fig, 1). In this region, r;<r < r,,
the tangential stresses are less than the flow limit and the medium moves in the z direction as a quasirigid
rod. On both sides of this region the velocity gradients ¥ are of opposite signs: positive in the tube interior
(zone I) and negative at the exterjior part of the tube (zone II),

Upon substituting v from Eq. (3) into Eq. (6), taking account of the sign, transforming to dimension-
less variables, and performing a single integration with the "no slip" boundary conditions at both walls

taken into account, we obtain the velocity field
' 1

@ () = BE— )+ ln = —;— (8 — %) —287 [F, (&) —f, ()] (72)
(e <E<E,
1
wz(é)zﬁ(l—§)+7»2ln§+~;(1—§2)+2t32[f2(§)—fg(1)] (7b)
(& <E<),
Wy =@y (B) =0 (8) (G <ELSH)- (7e)
Here
w= QMI;u,ﬁ= QTO,‘=R1;
.44R2 AR! RQ
(8)
r :_rl_ :i.
E“—E" El RZ: §2 Rg,
)\42 R }\‘2
18) = ——E&|dg [ (€)= —— | d&. (9)
. (®) j(g E)Ef(&) Ha g)a

We have the following conditions for determining the unknown quantities:

a) the equation for the velocities at both boundaries of the quasirigid core:

w; (1) = @ (&)
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Using Egs. (72) and (7b), we obtain the algebraic equation

[
ﬁ(l —21'“@ + V) -+ 3In Eg% +%(1 _§§+§%_/2)+ 25T[fz(‘é2)”‘fl(1) —:'fl (El) _fl (")] = O; (10)

b) the equilibrium balance of forces acting on a cylindrical element of the core of length L; herein
we denote the pressures on the end surfaces of the element by p, and p, (p, > py)

(P1— p)(oury — wrd) = 1y (2w, — 2mry) L
or, after obvious simplifications,
—& =8 (11)
Thus the plasticity parameter may be interpreted as the dimensionless width of the quasirigid flow
core;
c) the flow conditions at the boundaries of the quasirigid core, namely,
T(E)) = TpandT (&) = — T,

Using Eq. (6) we find

A =BG (12)

Equations (10)-(12) form a compatible system of equations for determining the unknown parameters
)\: gia §2'

As a result we arrive at a complicated transcendental equation for & or &, which is not solvable in
analytic form. Approximate methods were presented in [4] for finding the boundaries of the quasirigid
core in the case of comparatively small values of 8, i.e., when £ and & are close to 3, the relative radial
coordinate of the maximum on the velocity profile of a Newtonian liquid in the annular channel.

We consider another method of calculating the fundamental characteristics of the motion, a method
similar in concept to that used by Laird [5]. TFrom the condition (10) for the equation of velocities at both
boundaries of the quasirigid core, and also from the relation (12), we arrive at the equation

o TR
a@sﬁawa—@+m ~ﬂ —%~ﬁdeVuan—&m&M@m*}~ (102)

&,

We rewrite Eq. (10a) in the form

i
OE B =5 — B Fr— b8+ (A8
>
2
P 95883385 L S Ege
.6, L~ / — 2 7 [Fo(ty 1) — F1% El)j} { In %%, } =0. (13)
-9
o 2/ 15 A / : We solved Eq. (13) accurately by a numerical method with the
8 > ¢ aid of the Minsk-22 electronic digital computer. In addition, for
2/\ zz< / o az each fixed value of » and 3, a sequence of arbitrarily selected
06 Ko, g6 ! values of « = § /4, was given. From the conditionn =g =§ =1,
((\ RO\ . €1 it is obvious that w = @ = 1. In Eq. (13) the substitution of af, for
~ > \\\' o ¢ transforms Eq. (13) to an algebraic equation in the one unknown
~N > -~ 1 q
e SIS <= o,\z; £. The order of its solution is the following.
~ ~. e
N N \\\-‘ij Since ¢ = 1, then of all the roots of the equation ®{(w;&) =0
g2 T~ \AQ\Z - only the positive real root located in the interval (»; 1) is of interest
™ — L AN to us, We divide this interval into s equal parts and form the
1 roducts
“ p
4 2 4 4 98} D (x,_,) O (x,), where k=0; 1,2, ..., s. (14)
Fig. 2. Boundaries of quasirigid
flow core, £, and {,, versus the We may determine the interval Axy = Xk—xy —y, where the root
plasticity parameter §. is located from the sign of this product, We then divide Axj. into
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m equal parts and perform the calculations, comparing the values obtained with a preselected value §, which
defines the accuracy of the calculations, The process is repeated until the required precision is attained.
In this way, for each value of « the dependence of £, and £ on the plastic parameter 8 and the relative chan-
nel aperture » may be determined. The integrals appearing in Eq. (13) were obtained numerically in the
process of finding the roots,

For the values obtained for &, and ¢ the pressure loss Ap = AL was calculated from the condition (11)
and the dimensionless outflow rate from the material balance
& !
' 1
4:=j w1@>ad§+A—§-@§~—ﬁ>wo%~jl%(@gda (15)
A Ez

after performing the integration we obtained

g=Laeg—gem - arg-gon

6
i
e ?} (I-+&—¢8— %t + ﬁ2 [2%(1) — 29, (&) — 29, (E1) + 291 (%) + gg’: (1) — &%, (&) + 21 (8) — & (“)} . (16)
Here
_ Q@ _ i _
q__hnARﬁ ; CP1(§)ﬁj‘f1 (B)EdE; ¢, (2) -—yf;(.&) EdE. (17)

The computer results are presented graphically in Figs, 2-4, giving the dependences of q, q/8, £,
£ and w, on % and 8. In Figs, 2-4 the corresponding curves for a linear viscoplastic Schwedoff - Bingham
body (m =n = 1) are shown by the dashed lines,

The dependence of the dimensionless coordinates of the quasirigid core on the viscoplasticity param-
eter 8 is shown in Fig. 2; this dependence was found to be a universal one for all n = m by virtue of the con-
servative property of the basic relations (11) and (12).

For the various » values the curves §, exhibit reverse convexity in their ascending branches, their
ends being bounded by the line & =1. The curves & (their descending portions) undergo a change in con-
vexity downwards, i.e., towards the g axis. The geometric locus of the ends of these curves, their lower
boundaries, is the straight line ¢, =1-—-%, For an arbitrary fixed value of  the difference of the ordinates
of both branches is the value 8, As the graph shows, with an increase in § the quasirigid flow region be-
comes wider, This graph makes it very simple to determine the resistance (pressure loss) in the chamnel
for known values of », &, Ip and 7,.

Of considerable interest is the graph showing the dependence of the longitudinal speed w of the quasi-
rigid core on the parameters § and » (Fig. 3a). With an increase in 8 (we have in mind an increase in 7
for A =const, i.e., with an invariable moving pressure drop) the quantity w; decreases progressively to a
value close to zero; the higher the value of » the sooner this occurs. For comparison we have shown on
the graph the corresponding curves for the linear Schwedoff— Bingham model. We note that for identical
values of » and for fixed 3 the speed w; is somewhat higher for the Schwedoff-Bingham medium. The
other circumstance of importance consists in the fact that for small and moderate values of 3 the depen-
dence wy(f) is close to linear, whereas for the Cesson medium the graphs are noticeably nonlinear over
the whole range of possible § values. In addition, the quantity w, ces may be of an order less than the cor-
responding value for the Schwedoff— Bingham medium. Thus the nonlinearity of the rheological curve,
although not very informative about the geometry of the flow (i.e., the values of £, &,2), indicates the ex-
ceptionally strong influence on the kinematics and dynamics of the flow, and, in particular, on the speed
of the quasirigid core.

The manner in which the outflow rate q or g/8 through the annular gap depends on the plasticity param-
eter 8 (Fig. 3b, c¢) is of a similar nature, The influence of the rheological nonlinearity on q manifests it-
self here even more strongly than in the case of w;,. Thus, for example, for » =0.1 and 8 = 0.6, we have

q
S8 ~ 12.

qce $

As n increases this difference becomes less pronounced. For fixed 8 the channel geometry also effects the
outflow rate unequally (Fig. 4). For a linear viscoplastic medium the values of g significantly exceed the
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'Fig. 3. a) Velocity w, of the quasirigid core as a function of

the relative clogging of the channel » and the plasticity param-
eter 8; b) outflow rate g as a function of the parameters w and
B3 ¢) plasticity parameter $ as a function of the factor ¢ /3.
(Curves 1 and 2 correspond, respectively, to calculationsusing
the Cesson and the Schwedoff —- Bingham models.)

PN
F\\ o :
04 0z -
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92 Pie ,
) < respond, respectively, to cal-
NN - culations using the Cesson and
af ST =t the Schwedoff—- Bingham models.)
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corresponding values for its nonlinear analogue (Cesson model). The peculiarities inherent in the depen-
dence g(®) distinguish it from the dependence g(B). As % increases (a narrowing of the relative aperture),
the outflow rate q naturaily falls toward zero at ®» =1, However in regions of small and moderate » values
(up to 0.15-0.20), the curves behave almost linearly for both the Schwedoff Bingham and the Cessonmedia.

Finally, the ratio qg/dpeg Shows a weaker dependence on ® than on 5.

Thus the calculations (see Table 1) exhibit the strong influence of the nonlinearity of the viscoplastic
flow curve on the nature of the motion of the medium through the annular channel and on the integral char-
acteristics of the flow (outflow rate, pressure).

1. Z.
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